
Trinity
Администратор
- Регистрация
- 10.07.21
- Сообщения
- 41.318
- Реакции
- 662.996
Последние темы автора:
[Анастасия Белолипецкая] Как вырастить здоровую эмаль ребенку? Фторид и...
[Современное образование] Русский язык. Орфография. 1 - 11 класс (2025)
[Nikolietta calligraphy] Классическая каллиграфия в стиле Copperplate (2024)
[Ирина Довгалева] [DIVA] Практикум «Плоский живот» (2024)
[Светлана Орлова, Аида Манукова] [Англомастер] Лексика для ОГЭ...
[Современное образование] Русский язык. Орфография. 1 - 11 класс (2025)
[Nikolietta calligraphy] Классическая каллиграфия в стиле Copperplate (2024)
[Ирина Довгалева] [DIVA] Практикум «Плоский живот» (2024)
[Светлана Орлова, Аида Манукова] [Англомастер] Лексика для ОГЭ...
[Елена Кантонистова] [Stepik] Рекуррентные сети в NLP и приложениях (2025)
Слив курса Рекуррентные сети в NLP и приложениях [stepik] [Елена Кантонистова]
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing)
и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
Слив курса Рекуррентные сети в NLP и приложениях [stepik] [Елена Кантонистова]
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях.
Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".
Чему вы научитесь:
Узнаете как работают рекуррентные нейронные сети
Научитесь работать с фреймворком PyTorch
Сможете решать задачи генерации текстов при помощи RNN
Узнаете, как RNN используются в других областях
Создадите итоговый проект, оформленный в виде FastAPI-сервиса
Слушатели курса освоят следующие темы:
Повторят основы NLP (ML-подходы, w2v, fasttext)
Освоят продвинутые методы Python и познакомятся с фреймворком PyTorch
Узнают как работают рекуррентные нейронные сети
Применят RNN на практике
Освоят фреймворк FastAPI
Сделают итоговый проект с использованием RNN и FastAPI
Узнают о приложениях RNN в других областях
Для кого этот курс:
Курс подойдет всем, кто интересуется областью автоматической обработки текстов (Natural Language Processing)
и в особенности Deep Learning-подходами для решения задач из области NLP.
Программа курса:
Организация курса
Основы NLP: recap
Рекуррентные нейронные сети
Введение в PyTorch
Рекуррентные сети: практика — 1
Рекуррентные сети: практика — 2
Приложения RNN
Ванильный веб-сервис на FastAPI
Итоговый проект
Ваш преподаватель: Елена Кантонистова
Кандидат физико-математических наук, выпускница школы анализа данных Яндекса (ШАД)
Подробнее:
Скачать:![]()
Рекуррентные сети в NLP и приложениях
Интенсив посвящен рекуррентным нейронным сетям, применяющимся для решения широкого класса задач в области NLP, а также их приложениям в других областях. Курс является вторым в линейке курсов по Natural Language Processing после курса "Основы нейронных сетей и NLP".stepik.org
Для просмотра скрытого содержимого вы должны войти или зарегистрироваться.